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Using a strongly covariant formalism given by Carter for the deformations dynamics of
p-branes in a curved background and a covariant and gauge invariant geometric struc-
ture constructed on the corresponding Witten’s phase space, we identify the canonical
variables for Dirac–Nambu–Goto (DNG) and Gauss–Bonnet (GB) system in string
theory. Future extensions of the present results are outlined.
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1. INTRODUCTION

The interest in physical systems characterized by extended structures goes
back to the 19th century and to Lord Kelvin’s “aether atoms,” for which a spatial
extension was postulated in order to accommodate a complex structure which
would behave both as an elastic solid (conveying the transverse wave motion
of electromagnetism) and viscous liquid (dragged by the earth in its orbital
motion).

In the 20th century, there have been three active motivations leading to
either classical or quantum extendons. On the other hand, the physic of con-
densed matter (including biological systems) have revelated that membranes and
two-dimensional layers play an important role; in some case, there also appear
one-dimensional filaments (or strings). Similar structures appear in astrophysics
and cosmology, one example being the physics of black holes, in which the “mem-
brane” is the boundary layer between the hole and the embedding spacetime, and
another example is represented by the hypothetical cosmic strings.

In last years a considerable amount of effort has been devoted for developing
a quantum field theory of such extended objects (which in fact, will constitute
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the ultimate framework) for a complete M theory; however, it has not yet been
fully developed. The problem is that the dynamics of extended objects is highly
nonlinear and the standard methods are not directly applied. However, using
a covariant canonical formalism introduced by Crncović and Witten (1987) in
recent letters (Cartas-Fuentevilla, 2002; Cartas-Fuentevilla and Escalante, 2004;
Escalante, 2004a,b) the basic elements to quantize extended objects (in particular
bosonic p-branes) have been explored, for example, in Escalante (2004a) we
established the bases to study the quantization aspects of p-branes with thickness,
because, when adding it to the DNG action has an important effect on QCD
(Polyakov, 1986; Kleinert, 1986), among other things. In Escalante (2004b), it has
been demonstrated that the presence of Gauss–Bonnet (GB) topological term in
the DNG action describing strings, has a dramatic effect on the covariant phase
space formulation of the theory, in this manner, we shall obtain a completely
different quantum field theory. Recently, using the results given in Escalante
(2004b) we identified the covariant canonical variables for DNG p-branes and GB
strings, among other things Escalante (2004c). However, we found a little problem,
because, the canonical variables found for DNG are identified with spacetime
indices, whereas, the canonical variables for GB strings with worldsheet indices,
in this manner, if we add the GB term to the DNG action describing strings, we
need identify the pullback on the canonical variables for GB strings in order to
obtain it in terms of spacetime indices, and thus, to study in a covariant form
the quantization aspects for DNG–GB system in string theory, but it was not
clarified.

In this manner, the purpose of this article is to make, first, a generalization of
the results presented in Escalante (2004a,b) for a general Lagrangian constructed
locally from the geometry of the worldvolume in an arbitrary background, after
that, using a strongly covariant formalism given by Carter (1997) and Carter
(1993), we identified the canonical variables for DNG–GB system in string theory,
in this manner, we resolved the problem found in Escalante (2004c).

This paper is organized as follows. In Section 2, we make a generalization of
the method utilized in Escalante (2004a,b) for a Lagrangian constructed from the
geometry of the worldvolume embedding in an arbitrary background, confirming
as special case the results found in Escalante (2004a). In Section 3, we make an
outline of the results found in Cartas-Fuentevilla (2003), which, will be important
for the developement of this paper. In Section 4, using a strongly covariant scheme
of deformations introduced by Carter (1997) and Carter (1993), we found the
canonical variables for GB system in string theory, that unlike (Escalante, 2004c),
the canonical variables of GB have spacetime indices, which will be determinant
for the treatment of DNG–GB strings. In Section 5, with the results found in
the previous sections we identified the canonical variables for DNG–GB system
in string theory, and with this result, we clarified the problem that we found in
Escalante (2004c). In Section 6, we give the conclusions and prospects.
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2. SYMPLECTIC POTENTIALS FOR P-BRANES
IN A CURVED BACKGROUND

In recent letters, a covariant and gauge invariant symplectic structure for
DNG p-branes (Cartas-Fuentevilla, 2002), for membranes with quadratic terms
in the extrinsic curvature (Escalante, 2004a), and for the Gauss–Bonnet topological
term propagating in a curved background (Escalante, 2004b) has been constructed.
The form of constructing this geometric structure is by means of identifying from
the arguments of the total divergences at the level of the Lagrangian a symplectic
potential that does not contribute locally to the dynamics of the system, but
its variation (the exterior derivative on the phase space) generates a geometric
structure. In this manner, the purpose of this section is to generalize these results
for a Lagrangian constructed from the geometry of the worldvolume embedding
in an arbitrary spacetime.

For our aims, we will consider a local action depending on the embedding
functions Xµ which is invariant both under worldvolume reparametrization and
under rotations of the normals given by

S[X] =
∫ √−γLdDξ, (1)

where the Lagrangian L will be constructed locally from the geometry of the
worldvolume as

L
(
γ ab,Ki

ab, ∇̃aK
i
bc

)
, (2)

here, γ ab, Ki
ab and ∇̃a is the metric induced, the extrinsic curvature and the co-

variant derivative under rotation of the normal vector field, respectively (Capovilla
and Guven, 1995).

Now, we need calculate the deformation of the Lagrangian given in Equation
(2) to identify the equations of motion and the symplectic potential for the theory
described by the action (1). For this, we decompose an arbitrary infinitesimal
deformation of the embedding δXµ into its parts tangential and normal to the
worldvolume, this is

δXµ = eµ
aφ

a + nµ
iφ

i, (3)

where n
µ

i are the vector fields normal and e
µ
a are the vector fields tangent to

worldvolume, thus, the deformation operator is defined as

D = Dδ + D�, (4)

where

Dδ = δµDµ, δµ = ni
µφi, (5)
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and

D� = �µDµ, �µ = ea
µφa, (6)

in this manner, the variation of Equation (1) with the Lagrangian (2) is given by

δS =
∫ √−γ∇a(Lφa)dDξ +

∫ √−γ
[
KiφiL + Hab

i D̃δK
i
ab

+HabDδγab + Habc
i D̃δ

(∇̃aK
i
bc

)]
dDξ, (7)

where

Hab = ∂L

∂γab

,

Hab
i = ∂L

∂Ki
ab

= Hba
i,

Habc
i = ∂L

∂∇̃aK
i
bc

= Hacb
i . (8)

On the other hand, using the deformation formalism introduced in Capovilla and
Guven (1995) and writing the normal variation of γab, Ki

ab and ∇̃aK
i
cb in a curved

background, we obtain

D̃δK
i
ab = −∇̃a∇̃bφ

i + Ki
acK

c
bjφj + g(R(ea, nj )eb, n

i), (9)

D̃δ∇̃aK
i
bc = ∇̃a

[ − ∇̃b∇̃cφ
i + Ki

dbK
d
cjφ

j + g(R(eb, nj )ec, n
i)φj

] − [∇̃b

(
Kgj

a φj

)
+∇̃a

(
K

gj

b φj

) − ∇̃g
(
K

j

baφj

)]
Ki

gc + [ − ∇̃c

(
Kgj

a φj

) − ∇̃a

(
Kgj

c φj

)
+∇̃g

(
Kj

caφj

)]
Ki

gb + [
Ki

ad∇̃dφj − K
j

ad∇̃dφi

− g(R(nk, ea)nj , ni)φk
]
Kbcj , (10)

with g(R(ea, nj )ea, ni) = Rαβµνnj
αea

βeaµniν , Rαβµν being the background Rie-
mann tensor (Capovilla and Guven, 1995; Escalante, 2004a).

Substituting Equations (9) and (10) and removing the scalar field φi in (7)
we obtain

δS =
∫ √−γ

[
KiL − 2KabiHab − ∇̃a∇̃bH

ab
i − Ki

acK
cj

b Hab
j

+ g(R(ea, n
i)eb, n

j ))Hab
j + ∇̃c∇̃b∇̃aH

abci + 2Kgi
a ∇̃b

(
Habc

j Kgcj

)
+ 2K

gi

b ∇̃a

(
Habc

j Kgcj

) + Ki
ba∇̃g

(
Habc

j

)
Kj

gc + Ka
gi∇̃a

(
Habc

j K
j

gb

)
−Ki

ca∇̃g
(
Habc

j K
j

gb

) − ∇̃d
(
Habc

j K
j

adK
i
bc

) − ∇̃d
(
HabciK

j

adKbcj

)



Simplectic Geometry and the Canonical Variables for DNG and GB System 369

−g(R(ni, ea)nj , nl)Habc
l Kbcj

]
φi

+
∫ √−γ ∇̃a

[
Lφa − Hab

i ∇̃bφ
i + ∇̃bH

ab
i φi − Habc

i ∇̃b∇̃cφ
i

+Habc
i g(R(eb, nj )ec, n

i)φj + Habc
i Ki

dbK
d
cjφ

j

+∇̃bH
abc
i ∇̃cφ

i − ∇̃b∇̃cH
cba
i φi − Hbac

i Ki
gcH

gj

b φj − 2Habc
i Ki

gcK
gj

b φj

−Hcba
i Ki

gbK
gj
c φj + H

gbc

i Kai
c K

j

bgφj + H
gbc

i Kai
b Kj

cgφj

+H
gbc

i KbcjK
ai
g φj − Hdbc

i K
aj

d Kbcjφ
i
]
dDξ, (11)

from the last equation we can identify the equations of motion given by

KiL − 2Kabi
Hab − ∇̃a∇̃bH

abi − Ki
acK

cj

b Hab
j + g(R(ea, n

i)eb, n
j ))Hab

j

+∇̃c∇̃b∇̃aH
abci + 2Kgi

a ∇̃b

(
Habc

j Kgcj

) + 2K
gi

b ∇̃a

(
Habc

j Kgcj

)
+Ki

ba∇̃g
(
Habc

j

)
Kj

gc + Ka
gi∇̃a

(
Habc

j K
j

gb

) − Kxca
i∇̃g

(
Habc

j K
j

gb

)
−∇̃d

(
Habc

j K
j

adK
i
bc

) − ∇̃d
(
HabciK

j

adKbcj

)
− g(R(ni, ea)nj , nl)Habc

l Kbcj = 0, (12)

and we identify from the pure divergence term in (11)


a = √−γ
[
Lφa − Hab

i ∇̃bφ
i + ∇̃bH

ab
i φi − Habc

i ∇̃b∇̃cφ
i

+Habc
i g(R(eb, nj )ec, n

i)φj + ∇̃bH
abc
i ∇̃cφ

i − ∇̃b∇̃cH
cba
i φi

−Hbac
i Ki

gcK
gj

b φj − Habc
i Ki

gcK
gj

b φj − Hcba
i Ki

gbK
gj
c φj

+2H
gbc

i Kai
c K

j

bgφj + H
gbc

i KbcjK
ai
g φj − Hdbc

i K
aj

d Kbcjφ
i
]
, (13)

as a symplectic potential for the theory described for a Lagrangian given in
Equation (2), which is ignored in the literature, as it does not contribute locally to
the dynamics, but generates our geometrical structure on the phase space. Note that
there exists a term involving explicitly the background curvature in Equation (13).

Now, next we will take particular cases of the Lagrangian given in Equa-
tion (2). Using the previous results we will confirm the results given in Escalante
(2004a); for this, we take as first example the DNG p-branes action.

As we know the DNG p-branes action is proportional to the area of the
spacetime trajectory created by the brane, thus, if we take to L = −µ, where µ

is a constant characterizing the brane tension we have the well-known action for
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DNG p-branes

S = −µ

∫ √−γ dDξ, (14)

in this manner, utilizing Equation (8) we easily obtain

Hab = 0,

Hab
i = 0,

Habc
i = 0, (15)

substituting the last result in Equation (12) we obtain

Ki = 0, (16)

that corresponds to the equations of motion for DNG p-branes describing extremal
surfaces (Capovilla and Guven, 1995; Cartas-Fuentevilla, 2002; Escalante, 2004a).

On the other hand, if we consider Equation (15) in (13) we find


a = −µ
√−γφa, (17)

that corresponds to the symplectic potential for DNG p-branes. Thus, if we take
the variation of 
a (the exterior derivative on the phase space) given in (17) we
will generate a geometrical structure on the phase space, for more details see
Escalante (2004a).

As second example we will consider a Lagrangian that is quadratic in the
extrinsic curvature, because of in many cases it was seen that DNG action is
inadequate and there are missing corrective quadratic terms in the extrinsic cur-
vature. For example, in the 1980s Polyakov proposed a modification to the DNG
action by adding a rigidity term constructed with the extrinsic curvature of the
worldsheet generated by a string, and to include quadratic terms in the extrinsic
curvature to the DNG action is absolutely necessary, because its influence on the
infrared region determines the phase structure of the string theory, in this manner,
we can compute the critical behavior of random surfaces and their geometrical
and physical characteristics (Kleinert, 1986; Polyakov, 1986). In the treatment
of topological defects (Maeda and Turok, 1988), curvature terms are induced by
considering an expansion in the thickness of the defect. Bosseau and Letelier
have studied cosmic strings with arbitrary curvature corrections, finding for ex-
ample, that the curvature correction may change the relation between the string
energy density and the tension (Bosseau and Lettelier, 1992). Furthermore, such
models have been used to describe the mechanical properties of lipid membranes
(Canham, 1970; Helfrich, 1973). Because of the above considerations, we will
take a Lagrangian quadratic in the extrinsic curvature given by L = αKiKi , here
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α is a constant associated with the brane tension (Capovilla and Guven, 1995;
Escalante, 2004a). Thus, if we substitute it in Equation (8) we obtain

Hab =2αKiKabi,

Hab
i = 2αγ abKi,

Habc
i = 0. (18)

In this manner, in virtue to last equation Equation (8) takes the form

�̃Ki +
(

−g(R(ea, n
j )ea, ni) +

(
γ acγ bd − 1

2
γ abγ cd

)
K

j

abK
i
cd

)
Kj = 0, (19)

that corresponds to the dynamics for the theory under study (Capovilla and Guven,
1995; Escalante, 2004a).

In the same form, if we substitute Equation (18) into (13) we obtain


a = 2α
√−γ

[
1

2
KjKjφ

a + φi∇̃aKi − Ki∇̃aφi

]
, (20)

that corresponds to the integral kernel of a covariant and invariant of gauge sym-
plectic structure defined on the covariant phase space (Escalante, 2004a).

In concluding this section it is important to mention that in the same form,
using the previous results we can obtain the results presented in Escalante (2004b);
in this case, we analyze what happens when we add the GB topological term to the
DNG action in string theory, and we found for example, that in the dynamics of
deformations exist a non trivial contribution because of the GB topological term,
therefore, we found a contribution that does not vanish in the symplectic structure
constructed on the covariant phase space for the DNG–GB system in string the-
ory. These important results allowed us to find using a weakly covariant formalism
Capovilla and Guven (1995), the canonical variables for DNG p-branes and GB
term in string theory Escalante (2004c), however, as we already commented we
found some problems in considering the DNG–GB complete system. In this man-
ner, in the next section we will use a strongly covariant formalism introduced in
Carter (1993, 1997) and the results presented in Cartas-Fuentevilla (2003) for this
problem can be clarified, in other words, we will find the canonical variables for
DNG–GB system in string theory, which is completely unknown in the literature.

3. THE CANONICAL VARIABLES FOR DNG SYSTEM

As we commented, in Escalante (2004c) we found the canonical variables for
DNG p-branes (that contain the particular case of strings theory) using a weakly
covariant formalism Capovilla and Guven (1995), with spacetime indices, and the
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canonical variables for GB topological term with worldsheet indices. In this man-
ner, if we consider the DNG–GB system we need rewrite the canonical variables
of GB term with background spacetime indices and to consider a canonical trans-
formation that leaves the symplectic structure in the Darboux form with some new
variables, say P and Q. However, this problem can be clarified using a strongly
covariant formalism introduced in Carter (1997) and Carter (1993) as we will see
in the next lines.

Using a strongly covariant formalism introduced by Carter (1997) and Carter
(1993), it is found that the symplectic structure for DNG branes in a curved
background is given by Cartas-Fuentevilla (2003)

ω = σ0

∫


δ(−√−γ ηµ
αξα) d̄µ =

∫


√−γ J̃ µd̄µ, (21)

where σ0 is a fixed parameter, ηµ
α is the (first) fundamental tensor,

√−γ J̃ µ =
δ(−σ0

√−γ ηµ
αξα),  being a (spacelike) Cauchy surface for the configuration of

the brane, while d̄µ is the surface measure element of , and is normal to  and
tangent to the world surface. Here δ is identified as an exterior derivative on the
covariant phase space. The symplectic structure given in (21) is a exact differential
form, as it comes from the exterior derivative of a one form and in particular is
an identically closed two-form on the phase space. The closeness is equivalent to
the Jacoby identity that Poisson brakets satisfy, in a usual Hamiltonian scheme,
and the symplectic current is (world surface) covariantly conserved (∇̄µJ̃ µ = 0),
which guarantees that ω is independent on the choice of  and, in particular, is
Poncaré invariant.

We can rewrite the symplectic structure given in (25) for identifying the
canonical variables for DNG branes in the next form

ω =
∫



δXαδp̂αd, (22)

where p̂α = √−γpα , and pα = σ0τα , τα being a unit timelike vector field. In
this manner, Eq. (32) allows us to identify Xµ and p̂α as the canonical conjugate
variables in this covariant description of the phase space for DNG branes in a
curved background (in Escalante (2004c) we identified the canonical variables for
DNG p-branes in a weakly covariant formalism). It is important to mention that the
symplectic structure given in Equation (21) and the identification of the canonical
variables Xµ and p̂α allows us to find, for example, the covariant Poisson brackets,
the Poncaré charges and the closeness of the Poincaré algebra (Cartas-Fuentevilla,
2003; Escalante, 2004c).
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4. THE CANONICAL VARIABLES FOR GB
SYSTEM IN STRING THEORY

As we know, the Einstein–Hilbert term is characterized for the action

S = σ1

∫ √−γRd̄, (23)

where σ1 is a fixed parameter and R is the scalar curvature of the embedding
Cartas-Fuentevilla and Escalante (2004). Using the deformations formalism given
in Carter (1997) and Carter (1993) we can calculate the variation of S obtaining

δS = 2σ1

∫ √−γGγνKγνµξµd̄ + σ1

∫ √−γ ∇̄µ

(−2Gµ
ν ξν + ηαβδρα

µ
β

− ηα
βηµτ δρα

β
τ

)
d̄, (24)

where Gγν is the internal adjusted Ricci tensor, Kγνµ is the second fundamental
tensor and ρ

µ
αβ is the frame gauge internal rotation pseudo-tensor or internal

connection (Carter, 1993, 1997). In general, the adjusted Ricci tensor does not
vanish for an imbedded p-surface, however, in string theory the Ricci tensor
vanishes identically. From the last equation we can identify the equations of
motion for the brane theory given by

GγνKµ
γν = 0, (25)

and as in Section 2, the total divergence term of Equation (24) is identified as
symplectic potential for the theory under study, given by


µ = σ1
√−γ

[−2Gµ
ν ξν + ηαβδρ

µ
αβ − ηα

βηµτ δρβ
ατ

]
. (26)

If we take the particular case of string theory in Equation (25) the adjusted Ricci
tensor vanishes, in this manner, if we utilize the standard canonical formalism to
quantize this system, we would not find apparently nothing interesting, however,
as we can see in Escalante (2004b) using a weakly covariant formalism introduced
in Capovilla and Guven (1995) we found that the GB term in string theory gives a
nontrivial contribution on the Witten covariant phase space leading to a completely
different quantum field theory. We can see it if we take the particular case of string
theory in Eq. (26) obtaining


µ = σ1
√−γ

[
ηαβδρ

µ
αβ − ηα

βηµτ δρβ
ατ

]
, (27)

in this manner, we can see that the terms of last equation do not vanish. This result
allows us to find the canonical variables for GB strings.

In order to continue, we need rewrite the internal connection in terms of the
(co) vector ρµ defined as

ρλ = ρλ
µ
ν εν

µ, ρλ
µ
ν = 1

2
εµ
ν ρλ, (28)
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where εµν = 2ι
[µ
0 ι

ν]
1 , ι

µ

0 being a time-like unit vector, and ι
µ

1 a space-like one,
which constitute an orthonormal tangent (to the world sheet) frame (Carter, 1993,
1997). Thus, considering the last equation, the symplectic potential given in the
expression (27) takes the form


µ = √−γ εµνδρν, (29)

where we have used the frame gauge property of ρλ
µ
ν and consequently of ρλ

(Cartas-Fuentevilla and Escalante, 2004).
In this manner, we can define a covariant and gauge invariant symplectic

structure for GB strings as

ω′ =
∫

σ

δ(σ1
√−γ εµνδρν) d̄µ, (30)

therefore, from the last equation we can identify as well as for DNG system the
canonical variables for GB strings, this is

pν = σ1
√−γ εµ

ντµ, qν = ρν. (31)

In this manner, we can see that in this case the canonical variables have spacetime
indices contrary to Escalante (2004c) that has worldsheet indices. With these
results we can treat the complete DNG–GB system which is the purpose of the
next section and this paper.

5. THE CANONICAL VARIABLES FOR DNG–GB SYSTEM
IN STRING THEORY

In this section, we will study the DNG–GB system in string theory. For that,
we begin with the action that describe the system under study, this is

S = −σ0

∫ √−γ d +
∫

σ1
√−γRd, (32)

now, using the deformations formalism given in Carter (1997) and Carter (1993)
we take the variation of last equation and considering the particular case of string
theory, finding

δS = σ0

∫ √−γKµξµd +
∫

∇̄µ[−σ0η
µ

νξ
ν + σ1ε

µνδρν]d, (33)

where we can identify the equations of motion given by

Kµ = 0, (34)

that corresponds to the equations of motion for DNG strings. On the other hand,
the total divergence term of Eq. (33) is identified as symplectic potential for the
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theory under study


µ = √−γ [−σ0η
µ

νξ
ν + σ1ε

µνδρν], (35)

With the previous results, from last equation we can obtain the covariant and gauge
invariant symplectic structure for DNG–GB in string theory, this is

ω =
∫



δP̂ν ∧ δQνd̄, (36)

where

P̂ν = √−γpν, and Qν = −σ1

σ0
εναρα + Xν, (37)

with pν = σ0τν . Therefore, we can identify P̂ν and Qν as canonical variables for
DNG–GB system in string theory which is completely unknown in the literature.
We can note that the contribution because of GB term on the canonical variable
Qν (see the first term of Qν in Equation (37)) will be relevant when is calculated
the angular momentum of the complete DNG–GB system, and will be important
in the complete quantum field theory.

It is important to mention that we have choose the canonical momentum for
DNG strings (see Equation (22)) and DNG–GB strings (see Equation (37)) in the
same form, the reason is that pν satisfies the mass shell (pνp

ν = σ 2) and as we
know of the literature the mass shell is an important condition to quantum level
for DNG strings, because of the Virasoro operators and the mass shell conditions
determine the masses of the physical states, in this manner, we also hope that such
condition will be important when we analyze the spectrum of DNG–GB system
in string theory, however this we discuss in future works.

In concluding this work, is important to see that if we take σ1 = 0 in Equation
(37) we obtain the result given in Eq. (22). However, we hope the choice of the
canonical variables made in this paper as first quantization are the best election,
because the canonical momentum for DNG and DNG–GB strings coincide, thus,
with the results of this paper and the treatment that is found in the literature
to quantize DNG strings we have the necessary elements to quantize DNG–GB
strings.

6. CONCLUSIONS AND PROSPECTS

As we can see, using the deformations formalism introduced by Carter and
a covariant and gauge invariant symplectic structure, we could find the canonical
variables for DNG–GB system in string theory which is absent in the literature.
With these results we have the necessary elements to study the quantization aspects
of DNG–GB strings, as for this purpose we need the results of this paper and the
solutions to the equation of motion (34) that are given in elementary books on
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string theory. In this manner, we can observe the change in the resulting quantum
field theory of the topology of the world surface given by GB term, and thus, find
the contribution of such term to the results that we find in the literature for DNG
strings; however, we will discuss this subject in future works.

In addition to this work, we know that the bosonic strings (which is the case
of this work) are not the general case to describe the nature and it is necessary
to add the supersymmetry, among other things, in order to give a description of
the fermionic matter. In this manner, a interesting question may be the inclusion
of supersymmetry to the results of this paper to find the quantization bases for
DNG–GB in superstring theory and thus giving a complete description of the
matter, however, we will discuss this in future works.
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